Blog / Blog / What is nitrogen deficiency in plants and how to fix it?


What is nitrogen deficiency in plants and how to fix it?
7 mins read |

Nitrogen deficiency in plants occurs when they do not receive an adequate supply of nitrogen from the soil or their surrounding environment. It is one of the most common nutrient deficiencies in plants and can lead to stunted growth, yellowing of leaves (chlorosis), and overall poor plant vigor.

What is Nitrogen and its role in crop production?

Nitrogen is a chemical element that is essential for the growth and development of plants, animals, and many other organisms. It is represented by the symbol “N” in the periodic table and has an atomic number of 7.

Nitrogen is essential for plant life because it is required to produce chlorophyll, fundamental to photosynthesis, which is essentially how plants receive their food. In addition, nitrogen is necessary for the plant’s growth since it serves as a “building block” for amino acids, membrane proteins, DNA, enzymes, the majority of coenzymes, auxins, and cytokinins, as well as cells.

Because of this, it is essential to take measures to avoid and effectively manage nitrogen deficiency in plants, which ultimately slows the growth and reduces yields. On the other hand, nitrogen fixation and an adequate supply of nitrogen for plants are necessary to maintain healthy plant development and maximize crop yield.

Another significant disadvantage is that it results in lower quantities of protein in cereals, such as maize and wheat.

What is nitrogen deficiency in plants?

A shortage of nitrogen in plants is referred to as a nitrogen deficiency in plants. It may occur when organic materials with a high carbon content are introduced to the soil.

An example of this would be sawdust. Plants cannot get nitrogen because it is consumed by soil microbes, so they may continue their work of decomposing carbon sources.

This practice is called “robbing” the soil of its nitrogen content and may affect almost every kind of vegetable, except nitrogen-fixing legumes.

The development of deficiency may be avoided by applying manure to the foliage of plants or mulching with grass clippings.

Planting green manure crops like grazing rye or winter tares to cover the soil during the winter can assist in avoiding nitrogen loss from the soil. In contrast, leguminous green manures like winter tares will fix extra nitrogen from the atmosphere.

Causes of nitrogen deficiency in plants

Major causes of deficiency of nitrogen in plants include:

  • N deficiency is common in sandy, well-drained, fast-leaching soils.
  • Overwatering from irrigation and rain causes deficiency of nitrogen in plants.
  • Proper soil aeration delivers sufficient O2 to aerobic and facultative aerobic nitrogen-fixing microorganisms, preventing nitrogen famine. But denitrifying bacteria consume NO2/NO3 in low-oxygen soils. Poor aeration also turns plant-useful nitrates into greenhouse gas N2O.
  • Temperature impacts nutrient solubility and microbial activity, releasing plant-available nitrogen. Lower soil temperature reduces crop nutrition.
  • High zinc, magnesium, and potassium chlorides create nitrogen deficiency in plants.
  • Due to osmotic pressure, soil salinity reduces nitrogen uptake.
  • High or low pH impacts crop nitrogen availability.
  • Damaged or affected roots absorb nutrients inadequately when infected by pests or diseases.
  • Eventually, it influences nitrogen uptake.
  • High nitrogen solubility promotes deficiency of nitrogen in plants, as it is readily washed away.
  • Organic matter is vital for nitrogen; hence low levels suggest poor plant-available nitrogen.

How can nitrogen deficiency in plants be diagnosed?

It shouldn’t be surprising to learn that the earliest indications of deficiency in plants are often indications of poor health. The following is a list of the most typical visual symptoms that are connected with an inadequate intake of nitrogen:

  • Lower leaves are yellow, while the higher ones on the plant are a lighter shade of green.
  • Poorly developed shoots or branches.
  • You may be able to make out purple patterns on the plant stems of some plant types.
  • The leaves will ultimately turn brown, wilt, and fall off as the process of aging continues.
  • There will be a decrease in flowering and fruits.
  • Growth retardation of the plants.
  • Slowing down the production of new leaves.
  • If this shortage is allowed to continue, it will significantly impact agricultural production.
  The Future Of Precision Agriculture In Food Security

However, before treating the nitrogen deficiency in plants, it is essential to bear in mind that the visual signs of many other nutrient deficiencies are similar.

How to fix nitrogen deficiency in plants and soil?

Nitrogen deficiency can have detrimental effects on plant growth and productivity, but with the right strategies, it can be effectively addressed.

By implementing a comprehensive approach that includes soil testing, organic matter incorporation, balanced fertilization, leguminous cover crops, foliar feeding, and crop rotation, gardeners and farmers can successfully fix nitrogen deficiency in plants.

1. Soil Testing: Before implementing any corrective measures, it is crucial to conduct a soil test to assess the nutrient levels, including nitrogen. Soil testing provides valuable insights into the current nutrient composition and allows for appropriate adjustments.

2. Organic Matter and Compost : Incorporating organic matter into the soil is an effective long-term solution for nitrogen deficiency. Organic materials, such as compost, manure, and cover crops, contain nitrogen in organic forms that gradually release into the soil, providing a sustained source of nutrients.

3. Balanced Fertilization : Applying nitrogen-rich fertilizers can quickly rectify nitrogen deficiency. However, it is essential to strike a balance and avoid over-fertilization, as excessive nitrogen can lead to environmental pollution and imbalances in plant growth. Consult a professional or refer to soil test recommendations to determine the appropriate amount of nitrogen fertilizer needed.

4. Leguminous Cover Crops : Introducing leguminous cover crops, such as clover or alfalfa, into the rotation can improve nitrogen availability in the soil. Legumes have a unique ability to form symbiotic relationships with nitrogen-fixing bacteria, converting atmospheric nitrogen into a plant-usable form.

5. Foliar Feeding : In cases where immediate action is necessary, foliar sprays can provide a temporary solution for nitrogen-deficient plants. Nitrogen-rich fertilizers in liquid form can be applied directly to the leaves, allowing for rapid absorption and addressing the deficiency in the short term.

6. Crop Rotation : Rotating nitrogen-demanding crops with nitrogen-fixing plants or cover crops can help maintain soil fertility and minimize the occurrence of nitrogen deficiency. This practice prevents nutrient depletion by diversifying the plant species and their nutrient requirements.

Variable Rate Nitrogen (VRN): How does it work?

The nitrogen status of crops within a field may be precisely reflected via fertilizer application thanks to technological advancements in remote sensing. It directs the applicator, equipped with GPS, to apply the correct amount of fertilizer at the best possible rate as it travels over the field.

On the fertilizer spreader are sensors that monitor the crop’s light reflection at various wavelengths that are significant to the crop’s chlorophyll concentration and biomass. These sensors each get their light source, which allows them to function independently of the surrounding lighting environment.

  Nutrient deficiency causes yellow leaves on plants

Variable Rate Nitrogen (VRN)

The nitrogen demand is calculated on a computer every second using algorithms created from data collected during field trials. This information is then sent to a variable rate applicator or sprayer, which promptly adjusts the fertilizer application rate over the field.

The benefits of VRN

Here are some considerable benefits of variable rate nitrogen (VRN):

  • A rise in the overall yield of 4.65 percent on average.
  • Effectively targeting inputs.
  • Maintaining and even increasing grain’s protein levels.
  • More uniform crop canopy.
  • Reduced chances of becoming sick from lodging or illness.
  • Efficiency gains in the use of nitrogen ( nitrogen use efficiency: NUE ).

What are maps of nitrogen fertilizers?

It is possible to conduct variable rate fertilization thanks to prescription maps. It allows the fertilizer dosage to be optimized by linking the suitable amount of fertilizer with each field section. It is a crucial point when discussing using nitrogen fertilizer in cereals.

A deficiency in nitrogen for plants results in a decrease in output and quality, while an excessive amount poses concerns to the environment and adds additional expenses to agricultural operations.

There are three stages involved in the construction of prescription maps:

  1. Identifying the field portions that are consistent concerning the dosage of nitrogen.
  2. Selecting the approach for fertilization.
  3. Determining the appropriate quantity of nitrogen fertilizer for plants to apply in each field section.

How to calculate nitrogen for plants in a fertilizer bag?

Do not let yourself be misled by the colossal nitrogen figure shown on the fertilizer bag; this is the number that comes first in the N-P-K analysis. The total nitrogen calculation in a pack of fertilizer may be carried out by estimating the pounds of nitrogen per thousand square feet.

Multiplying the weight of the bag of fertilizer by the percentage of nitrogen contained in the fertilizer (the first figure in the N-P-K designation found on the front of the bag) will allow you to get the pounds of nitrogen contained in the load in pounds. After that, divide the total number of pounds of nitrogen by the surface area that the bag claims.

It will serve to get the number of pounds of nitrogen for plants that will be needed per 1,000 square feet. Note that fertilizer is often sold in bags measuring 5,000 or 10,000 square feet.

Apply for help to agricultural platforms

It is much simpler to request assistance from agricultural platforms like GeoPard. The reason is that they provide a variety of solutions, which may include but are not limited to the following:

  • Establishing management zones and drawing prescription and variable rate application maps can help you locate and control trouble spots on your farm.
  • Analyses of soil data ( soil data analytics ) to create prescription maps for variable rate agriculture fertilization and get comprehensive maps of the attributes of the soil.
  • Yield data may be used to make better-informed choices and increase growing efficiency.

Frequently Asked Questions

1. How is there a shortage of nitrogen in soil?

A shortage of nitrogen in soil can occur due to natural factors like leaching and volatilization, imbalanced fertilization practices, crop uptake, and low organic matter content. It is crucial to address this deficiency through proper fertilization, organic matter incorporation, and sustainable agricultural practices to ensure optimal plant growth and productivity.

  Vegetation Indices and Chlorophyll Content

2. How to calculate nitrogen in fertilizer?

To calculate the amount of nitrogen in fertilizer:

  • Check the fertilizer label for the nitrogen content, represented by the three numbers in the N-P-K ratio. For example, if the ratio is 10-10-10, it means the fertilizer contains 10% nitrogen.
  • Determine the weight of the fertilizer you plan to use. For instance, if you have 1 kilogram of fertilizer, 10% of it (0.1 kilograms) is nitrogen.
  • Convert the weight of nitrogen into a more commonly used unit, such as grams. In this case, 0.1 kilograms is equal to 100 grams of nitrogen.
  • Use the calculated amount to determine the appropriate application rate based on the specific needs of your plants, considering factors like soil conditions and desired growth.

3. How do plants obtain nitrogen? How it helps them and How to make it?

Plants cannot produce nitrogen directly. They obtain nitrogen through soil absorption, nitrogen fixation by symbiotic bacteria in legumes, decomposition of organic matter, and uptake from fertilizers. These mechanisms provide plants with the necessary nitrogen for their growth and development.

4. Is nitrogen mobile in plants?

Yes, nitrogen is mobile in plants. Nitrogen can be easily transported within the plant from older tissues to younger ones through the process known as translocation. When nitrogen is deficient in certain parts of the plant, it can be mobilized from older leaves or storage organs and redistributed to areas where it is needed for growth and development.

This mobility of nitrogen enables efficient allocation of resources and ensures that plants can prioritize essential functions in times of limited nitrogen availability.

5. How to figure corn yield?

To figure corn yield, follow these steps:

  • Measure Ear Length : Measure the length of a representative sample of corn ears from base to tip. Take several measurements and calculate the average ear length.
  • Count Rows per Ear : Count the number of rows on each ear of corn. Again, take multiple counts and calculate the average number of rows per ear.
  • Measure Grain Set : Select a random sample of corn ears and count the number of fully developed grains per row. Do this for several ears and calculate the average grain count per row.
  • Determine Harvest Area : Measure the area of the field or plot from which the corn was harvested.

Multiply the average ear length by the average number of rows per ear to calculate the number of kernels per ear. Then, multiply the average grain count per row by the number of kernels per ear to obtain the total number of kernels. Finally, divide the total number of kernels by the harvest area to determine the corn yield, usually expressed in bushels per acre.

Get the latest news
from GeoPard

Subscribe to our newsletter!


GeoPard provides digital products to enable the full potential of your fields, to improve and automate your agronomic achievements with data-driven precision Ag practices

Join us on AppStore and Google Play

Get the latest news from GeoPard

Subscribe to our newsletter!


Related posts

    Request Free GeoPard Demo / Consultation

    By clicking the button you agree our Privacy Policy . We need it to reply to your request.


      By clicking the button you agree our Privacy Policy

        Send us information

        By clicking the button you agree our Privacy Policy